
A DOMAIN SPECIFIC APPROACH
TO HETEROGENEOUS

PARALLELISM

 Hassan Chafi, Arvind Sujeeth, Kevin Brown, HyoukJoong Lee,

Anand Atreya, Kunle Olukotun

Stanford University
Pervasive Parallelism Laboratory (PPL)

Presenter
Presentation Notes
Thank you for attending the talk. My name is Hassan Chafi and I will be presenting some of the work we have been doing at the pervasive parallelism lab at Stanford. The title of the paper is a domain specific approach to heterogeneous parallelism

Era of Power Limited Computing

 Mobile
 Battery operated
 Passively cooled

 Data center
 Energy costs
 Infrastructure costs

Presenter
Presentation Notes
So we have entered the era of power limited computing. This is affecting all segments, from the Mobile space which was always power limited to the data center where budgets are increasingly dominated by operating and not equipment cost.

Computing System Power

second
OpsEnergyPower Op ×=

Presenter
Presentation Notes
hitting the so called power wall, means power is expected to stay constant, while performance is still expected to increase. This can only be achieved by reducing the power per op, so performance is no longer measured in terms of Flops but in terms of Flop/watt.

Heterogeneous Hardware

 Heterogeneous HW for energy efficiency
 Multi-core, ILP, threads, data-parallel engines, custom engines

 H.264 encode study

1

10

100

1000

4 cores + ILP + SIMD + custom
inst

ASIC

Performance

Energy Savings

Source: Understanding Sources of Inefficiency in General-Purpose Chips (ISCA’10)

Future performance gains will mainly come from heterogeneous
hardware with different specialized resources

Presenter
Presentation Notes
So how do you achieve better flop/watt, a recent study into the inefficiencies of general purpose chips published in ISCA looked at H264 encode as a case study. The baseline systems were a simple 4 core risc processor on one extreme and a custom asic design on the other.
So what we discovered there is that:
ILP helps but no too much
SIMD, which GPU can be argued to be a class of, gives you an order of magnitude performance and energy savings
You have to Add customHW support to get an additional 2 order of performance gain and more than an order magnitude energy savings and this gets you close to the ASIC baseline
clearly, future performance gains will mainly come from heterogeneous hardware with different specialized resources

Heterogeneous Parallel
Architectures

Driven by energy

efficiency

Cray
Jaguar

Sun
T2

Nvidia
Fermi

Altera
FPGA

Presenter
Presentation Notes
So driven by energy efficiency and the need for higher performance, application developers will have to deal with a variety of systems that combine a heterogenous mix of computing resources that include multithreaded processors, data-parallel focused simd accelarators and programmable hardware resources. �In some cases all of the above within a cloud or cluster environment

Heterogeneous Parallel
Programming

Cray
Jaguar

Sun
T2

Nvidia
Fermi

Altera
FPGA

MPI

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

Presenter
Presentation Notes
Each of these hardware resources require a different programming model, pthreads or openmp for threading, cuda or opencl for data parallelism, verilog or vhdl for hardware synthesis and mpi for messaging within a cluster environment.

Programmability Chasm

Too many different programming models
Cray
Jaguar

Sun
T2

Nvidia
Fermi

Altera
FPGA

MPI

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

Virtual
Worlds

Personal
Robotics

Data
informatics

Scientific
Engineering

Applications

Presenter
Presentation Notes
This variety of different programming models creates what we call a programmability chasm. Applications developers after years of perfecting software engineering techniques for writing clear, readable and maintainable code with high productivity have to resort to writing a separate low-level implementation of their application for each of their desired targets.

Presenter
Presentation Notes
The question we would like to answer: Is it possible to write one program in a high level manner and run it on all these targets

Programmability Chasm

Cray
Jaguar

Sun
T2

Nvidia
Fermi

Altera
FPGA

MPI

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

Virtual
Worlds

Personal
Robotics

Data
informatics

Scientific
Engineering

Applications

Ideal Parallel
Programming Language

Presenter
Presentation Notes
Or, Can we come up with an ideal parallel programming language that will help us write these applications in a way that automatically targets these architectures.

Performance

Productivity Completeness

The Ideal Parallel
Programming Language

Presenter
Presentation Notes
This ideal parallel programming language would have the following requirements:
Performance = scalability and efficiency
Productivity = ease of development
Completeness = applicability to the majority of problems that come up in application development.
We currently do not think a language fulfilling all these requirements exist and many people doubt whether such a language will ever exist.

Successful Languages

Performance

Productivity Completeness

Presenter
Presentation Notes
There are languages that fulfill a couple of these requirements. For example C and C++ are general purpose languages focused on performance. �Python and ruby are also general purpose languages, but their focus is on productivity

Successful Languages

Performance

Productivity Completeness

PPL
Target Languages

Presenter
Presentation Notes
We are interested in languages that achieve performance and productivity by trading off completeness and focusing on a specific domain.

Domain Specific Languages

Performance

Productivity Completeness

Domain
Specific

Languages

Presenter
Presentation Notes
These types of language are commonly known as domain-specific languages

Presenter
Presentation Notes
So back to our question: Is it possible to write one program and run it on all these targets?

Presenter
Presentation Notes
We believe we can do so, by programming at a much higher level. Specifically, we propose using Domain specific lib and languages

A Solution For Pervasive Parallelism

 Domain Specific Languages (DSLs)
 Programming language with restricted expressiveness for a particular

domain

Presenter
Presentation Notes
DSL are nothing new, they have been proposed and used for many domains, quite succesfully, and for various reasons.

Benefits of Using DSLs for
Parallelism

Productivity
•Shield average programmers from the difficulty of parallel
programming

•Focus on developing algorithms and applications and not on low
level implementation details

Performance
•Match generic parallel execution patterns to high level domain
abstraction

•Restrict expressiveness to more easily and fully extract available
parallelism

•Use domain knowledge for static/dynamic optimizations

Portability and forward scalability
•DSL & Runtime can be evolved to take advantage of latest
hardware features

•Applications remain unchanged
•Allows HW vendors to innovate without worrying about application
portability

Presenter
Presentation Notes
By trading off completeness, DSLs can provide the following benefits for parallel programming.

They allow us to hide the complexity of low level parallel programming from average programmers
Their high level and declarative nature help developer focus on algorithms and describing what needs to be done as opposed to how to do it.

This has implications for performance, a DSL can map high level declarative constructs to lower level execution patterns
The restricted expressiveness in a well designed DSL also helps you in more fully and safely extracting parallelism
We can also use the domain knowledge that is now explicitly encoded in the program to perform optimizations

There are also benefits for portability and future scalability as DSLs and runtimes can be evolved while programs can remain unchanged but still benefit from future hardware
HW vendors can innovate in their HW designs in similar fashion to the innovation that took place in the graphics domain
OpenGL programs sped up across generations of vastly different GPU, this would not have been possible if people were developing these applications using device specific languages.
Another example are SQL programs which also benefitted from many generations of improved software and hardware.

Bridging the
Programmability Chasm

Domain Embedding Language (Scala)

Virtual
Worlds

Personal
Robotics

Data
informatics

Scientific
Engineering

Physics
(Liszt)

Data
Analysis

Probabilistic
(RandomT)

Machine
Learning
(OptiML)

Rendering

Parallel Runtime (Delite)

Dynamic Domain Spec. Opt. Locality Aware Scheduling

Staging Polymorphic Embedding

Applications

Domain
Specific

Languages

Heterogeneous
Hardware

DSL
Infrastructure

Task & Data Parallelism

Static Domain Specific Opt.

Presenter
Presentation Notes
This brings us to the Lab’s vision for heterogeneous parallel programming, we envision applications will be written using a collection of DSLs.

We will look at OptiML, an example DSL for machine learning

To make this tractable we need to develop an infrastructure that dramatically simplifies building these DSLs. We use Scala as our Domain embedding Language . and present DELITE, an example of such an infrastructure.

We show how we can target GPU and multicore from a an application written in optiml , we will show some performance results and conclude

OptiML: A DSL for ML
 Machine Learning domain

 Learning patterns from data
 Applying the learned models to tasks

 Regression, classification, clustering, estimation
 Computationally expensive
 Regular and irregular parallelism

 Characteristics of ML applications

 Iterative algorithms on fixed structures
 Large datasets with potential redundancy
 Trade off between accuracy for performance
 Large amount of data parallelism with varying

granularity
 Low arithmetic intensity

Presenter
Presentation Notes
Let’s start by looking at OptiML, a DSL focused on machine learning
Machine learning is about learning patterns from data, and then applying the learned models to tasks such as regression, classification, clustering and so forth. You have probably interacted with a machine learning based application, if you have ever used a recommendation engine, answered a recaptcha challenge or used a camera that detects faces.
ML applications are characterized by iterative algorithms on fixed structures, large datasets with potential redundancy. These application can trade off accuracy for performance and vice versa. And they generally exhibit large amount of data parallelism with varying granularities and low arithmetic intensity

OptiML: Motivation
 Raise the level of abstraction

 Focus on algorithmic description, get parallel performance

 Use domain knowledge to identify coarse-grained
parallelism
 Identify parallel and sequential operations in the domain (e.g.

‘summations, batch gradient descent’)

 Single source => Multiple heterogeneous targets
 Not possible with today’s MATLAB support

 Domain specific optimizations

 Optimize data layout and operations using domain-specific
semantics

 A driving example
 Flesh out issues with the common framework, embedding etc.

Presenter
Presentation Notes
In designing OptiML, we wanted to raise the level of abstraction and have machine learning researchers focus on algorithmic description of their application and get automatic parallel performance.

We do this by using domain knowledge to provide constructs that when used, help us identify coarse grained task and data parallelism

We wanted OptiML users to only write one single version of their application and automatically have it targeted to either multicore and/or gpu. This is in constract to the current support Matlab provides in this arena

We also wanted to leverage domain knowledge to apply domain specific optimizations to OptiML programs
And In general, we are using OptiML as a driving example to build a prototype of the infrastrucute

OptiML: Overview
 Provides a familiar (MATLAB-like) language and

API for writing ML applications
 Ex. val c = a * b (a, b are Matrix[Double])

 Implicitly parallel data structures

 General data types : Vector[T], Matrix[T]
 Special data types : TrainingSet, TestSet, IndexVector,

Image, Video ..
 Encode semantic information

 Implicitly parallel control structures
 sum{…}, (0::end) {…}, gradient { … }, untilconverged { … }
 Allow anonymous functions with restricted semantics to be

passed as arguments of the control structures

Presenter
Presentation Notes
OptiML provides a familiar Matlab-like language and api for writing machine learning applications.

The language provides implicitly parallel data structures, consisting of general linear algebra types such as Vector and Matrix as well as types that are more specialized to the machine learning domain such as training set, image, video and so forth

The language also provides implicitly parallel control structures which take a user provided function with some restricted semantics

% x : Matrix, y: Vector
% mu0, mu1: Vector

n = size(x,2);
sigma = zeros(n,n);

parfor i=1:length(y)
 if (y(i) == 0)
 sigma = sigma + (x(i,:)-mu0)’*(x(i,:)-mu0);
 else
 sigma = sigma + (x(i,:)-mu1)’*(x(i,:)-mu1);
 end
end

Example OptiML / MATLAB code
(Gaussian Discriminant Analysis)

// x : TrainingSet[Double]
// mu0, mu1 : Vector[Double]

val sigma = sum(0,x.numSamples) {
 if (x.labels(_) == false) {
 (x(_)-mu0).trans.outer(x(_)-mu0)
 }
 else {
 (x(_)-mu1).trans.outer(x(_)-mu1)
 }
}

OptiML code (parallel) MATLAB code

ML-specific data types

Implicitly parallel
control structures

Restricted index
semantics

Presenter
Presentation Notes
So let’s take a look at an example, this is Gaussian discriminant analysis implemented in both OptiML and Matlab.
This example highlights some of the features of OptiML, including

ML learning specific data types, in this example x is a training set.

Implicitly Parallel Control structures, so in this case what the algorithm is trying to express is a summation, so why not have summation as a construct so that users do not have to resort to explicit looping constructs

Also notice that within the summation function, we enforce a restricted index semantics so that we can safely parallelize the summation

So as you can see, no parallel programming required, this is in contrast with the matlab example, which requires the use of explicit parallelization constructs. However, you could say, well that parfor is not too bad

MATLAB implementation
 `parfor` is nice, but not always best

 MATLAB uses heavy-weight MPI processes under the hood
 Precludes vectorization, a common practice for best

performance
 GPU code requires different constructs

 The application developer must choose an implementation,
and these details are all over the code

ind = sort(randsample(1:size(data,2),length(min_dist)));
data_tmp = data(:,ind);
all_dist = zeros(length(ind),size(data,2));
parfor i=1:size(data,2)
 all_dist(:,i) =
sum(abs(repmat(data(:,i),1,size(data_tmp,2)) -
data_tmp),1)';
end
all_dist(all_dist==0)=max(max(all_dist));

Presenter
Presentation Notes
The problem is that using parfor is not always the best option, Matlab uses heavy-weight MPI processes under the hood. Matlab also encourages it users to vectorize their code for best performance, vectorization is a different construct than parfor and in some cases a vectorized application performs better, in others the parallelized version using pfor may start out performing worse but is more scalable and catches up at higher thread counts. Matlab GPU code requires its own constructs. This forces the developper to choose ahead of time an implementation strategy that may not work in all cases. Also notice that these details are all over the code making much more difficult to read, reason about and maintain.

Domain Specific Optimizations

 Relaxed dependencies
 Iterative algorithms with inter-loop dependencies

prohibit task parallelism
 Dependencies can be relaxed at the cost of a marginal

loss in accuracy

 Best effort computations
 Some computations can be dropped and still generate

acceptable results
 Provide data structures with “best effort” semantics,

along with policies that can be chosen by DSL users

 h

S. Chakradhar, A. Raghunathan, and J. Meng. Best-effort parallel execution
framework for recognition and mining applications. IPDPS’09

Presenter
Presentation Notes
Using domain knowledge, we can make several optimizations to OptiML programs. Here I show a couple of dynamic optimizations. The first is called relaxed dependencies, where we take an iterative machinelearning algorithm with loop carried dependencies that may prohibit parallelism, and relax some of these dependencies at the cost of some loss in accuracy.
We also applied a technique developed by NEC lab researchers called best effort computation in which some computation on elements of a best effort vector is dropped yielding much better performance with again reasonable increase in error rate. We will look at some numbers in the result section

Delite: a framework to help build
parallel DSLs

 Building DSLs is hard
 Building parallel DSLs is harder
 For the DSL approach to parallelism to work,

we need many DSLs

 Delite provides a common infrastructure
that can be tailored to a DSL’s needs
 An interface for mapping domain operations to

composable parallel patterns
 Provides re-usable components: GPU

manager, heterogeneous code generation, etc.

Presenter
Presentation Notes
Now we turn our attention to Delite, which is a framework we are developing with the goal of simplifying the implementation of implicitly parallel DSLs such as OptiML.
Delite provides reusable, composable parallel patterns that can be extended by DSL operations and mapped and specialized to efficient execution on different devices.

Composable parallel patterns

 Delite view of a DSL: a collection of
data(DeliteDSLTypes) and operations (OPs)

 Delite supports OP APIs that express parallel
execution patterns

 DeliteOP_Map, DeliteOP_Zipwith, DeliteOP_Reduce, etc.
 Planning to add more specialized ops
 DSL author maps each DSL operation to one of

the patterns (can be difficult)

 OPs record their dependencies (both mutable
and immutable)

Presenter
Presentation Notes
Delite views DSLs as a collection of data types and operations on those data types. So if your DSL can be cast to that notion, then Delite will be able to handle it.
Delite provides a set of OP interfaces that can be used by the DSL author, such as Map, reduce, zipwith, scan and so forth. These are high level execution patterns, and the DSL’s author is responsible for mapping from their domain to these OPs.
We are adding more Ops as we have to support different kinds of DSLs. These Ops are really a toolbox, so
Not every DSL will use every pattern, and not all parallel operations necessarily will compose (but must compose within set)
Not every device will support every pattern; some patterns will determine what devices an op can run on

Example code for Delite OP

 case class OP_+[A](val collA: Matrix[A],
 val collB: Matrix[A],
 val out: Matrix[A])
 (implicit ops: ArithOps[A])
 extends DeliteOP_ZipWith2[A,A,A,Matrix]{

 def func = (a,b) => ops.+(a,b)
 }

Dependencies

Interface for this pattern

Execution pattern

Presenter
Presentation Notes
Let me show what a DSL author has to do to support matrix addition for example. Here he declares an OP_+, he specifies the dependencies that this op has. Delite uses this information to automatically infer task level parallelism between ops and track all dependencies in our program
The author also tells us what kind of execution pattern this OP_+ should be mapped to, for example in this case he chooses to map it to a zip with. Finally, each pattern has an interface to be filled out, so in the case of the zip, the author needs to provide the function we will be applying as we are zipping through the two matrices. Namely addition. And that’s pretty much it, they do for all their operations
Notice, very little parallel coding even for the DSL author. Every thing else is handled by Delite.

Delite: a dynamic parallel runtime

 Executes a task graph on parallel,
heterogeneous hardware
 (paper) performs dynamic scheduling decisions
 (soon) both static and dynamic scheduling

 Integrates task and data parallelism in a
single environment
 Task parallelism at the DSL operation granularity
 Data parallelism by data decomposition of a single

operation into multiple tasks

 Provides efficient implementations of the
execution patterns

Presenter
Presentation Notes
Now we are going to look at how a DSL structured in this way, and a program written using this DSL, can actually be run on heterogeneous hardware.

Delite models an application as a task graph that needs to be scheduled across multiple heterogeneous devices. This allows
Delite to exploit both task and data parallelism. Task parallelism is possible because Delite tracks op dependencies, and performs any necessary synchronization. Data parallelism comes from the implementation of the data parallel execution patterns Delite provides.

So let’s see how Delite builds up this task graph…

Delite Execution Flow

Calls Matrix
DSL methods

Delite applies
generic & domain
transformations and
generates mapping

DSL defers OP
execution to
Delite R.T.

Presenter
Presentation Notes
Each of the Matrix operations in our example is a DSL method.

DSL methods construct and submit Delite OPs to the runtime
Returns a proxy that is transparent to the user

Delite dynamically builds task graph using deferred execution of Ops that get submitted

Schedules task graph to available HW resources

Using GPUs with MATLAB

sigma = gpuArray(zeros(n,n));
for i=1:m
 if (y(i) == 0)
 sigma = sigma + gpuArray(x(i,:)-mu0)’*gpuArray(x(i,:-mu0);
 else
 sigma = sigma + gpuArray(x(i,:)-mu1)’*gpuArray(x(i,:-mu1);
 end
end

 MATLAB Parallel Computing Toolbox

sigma = gzeros(n,n);
y = gdouble(y);
x = gdouble(x);
for i=1:m
 if (y(i) == 0)
 sigma = sigma + (x(i,:)-mu0)’* (x(i,:-mu0);
 else
 sigma = sigma + (x(i,:)-mu1)’* (x(i,:-mu1);
 end
end

 AccelerEyes Jacket

Presenter
Presentation Notes
Now we turn our attention to how we leverage GPUs using Delite.
Let’s start by looking at the experience in Matlab. We are showing code written using the official Matlab GPU support as well as using AccerEyes Jacket which is a third party Matlab add on. In both cases it is up to the user to ship computation back and forth, and you would need to have two versions of your application if you wanted to support both multicore and gpu. The decision of what to ship to the gpu is also not a straightforward one and can be input dependent.

Using GPUs with Delite

 No change in the application source code
 Same application code runs on any kind of heterogeneous

system
 Good for portability

 Runtime (not the DSL user) dynamically determines
whether to ship the operation to GPU or not
 Good for productivity

 Performance optimizations under the hood
 Memory transfer between CPU and GPU
 On-chip device memory utilization
 Concurrent kernel executions

Presenter
Presentation Notes
In contrast to Matlab, we do not require any change to the user application. And furthermore, the runtime is responsible for making scheduling decisions based on dynamic information. The runtime also implements several optimizations to enhance execution on the gpu

Optimized GPU Runtime Diagram

A

C +

*

B /
/

CPU executor threads

GPU execution manager GPU devices Delite main thread

Device
Memory

Application

scheduler +
optimizer

Main Memory

cache map

Delite OP

Delite OP

Input/Output
Transfer

Kernel
Call

Presenter
Presentation Notes
So here is a little more detail on how we handle GPU computation. First we split the graph and send a portion to the GPU executor thread.

GPU executor identifies the Delite OP and launches the appropriate CUDA kernel to GPU
Corresponding input data is implicitly transferred to GPU memory
Use CUDA asynchronous calls for performance
Use mapped memory to check kernel termination
We only copy back the output data if/when CPU needs it

Reuse data on GPU device memory
Need to apply as many operations (kernels) as possible on the data already on the device memory
Keep data as long as possible for temporal locality
Eviction policy needed

Encourage bulk transfer
Training set as an example
Small sized data transfer make the PCI-e bandwidth utilization even worse
Also transfer neighboring data for spatial locality

GPU Code generation
 DSL OPs require implementations of GPU

kernels
 (paper) DSL provides optimized implementations

 Libraries (CUBLAS, CUFFT, etc) can be used
 (now) GPU kernels generated from Scala kernels

 Write once, run anywhere, libraries can still be used

 What about DSL constructs with anonymous

functions?
 The GPU task is given by DSL user, not DSL writer
 Impossible to pre-generate kernels
 Solution: Automatically generate corresponding GPU

kernels at compile time

Presenter
Presentation Notes
So how do we get the CUDA kernels. So as of the submission of this paper, the DSL author was responsible for providing cuda kernels for their DSL operations. They could use libraries of course. So to the DSL user, this is was invisible, but the DSL author still needed to write cuda. But today, we are able to also generate cuda code directly from kernels writing in Scala.

However we did need to generate some cuda automatically even for this paper so that the DSL user doesn’t have to touch cuda. And this was due to DSL constructs that take a function, such as summation.

GPU Code Generation Flow

val a = Vector[Double](n)
val b = 3.28
val c = (0::n) { i => i * b * a(i) }

__global__ kernel0(double *input, double *output, int length, double *a, double b) {
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if(i < length)
 output[i] = input[i] * b * a[input[i]];
}

Original Code

val a = Vector[Double](n)
val b = 3.28
val c = (0::n) { DeliteGPUFunc({i => i * b * a(i)}, 0, List(a,b)) }

Transformed Code

Generated CUDA Code

Scala compiler plugin / embedding
(AST manipulation)

Presenter
Presentation Notes
in this example, I am showing a vector construction that takes a function and constructs a vector from applying an element index to the function. Since this is written by the user, we need to compile the function down to cuda. We wrote a Scala compiler plugin to do just that, it takes the code above, generates a cuda kernel for the function, and also transforms the original code so that it can capture whatever global inputs are required to execute the function.

So let’s look at some of the performance we can achieve with OptiML and Delite

Experimental Setup
 4 Different implementations

 OptiML+Delite
 MATLAB (Original, GPU, Jacket)

 System:
 Intel Nehalem
 2 sockets, 8 cores, 16 threads
 24 GB DRAM
 NVIDIA GTX 275 GPU

Presenter
Presentation Notes
** MATLAB is as good as C implementations for matrix/vector operations that use BLAS (all except LBP).

Benchmark Applications
 6 machine learning applications

 Gaussian Discriminant Analysis (GDA)
 Generative learning algorithm for probability distribution

 Loopy Belief Propagation (LBP)
 Graph based inference algorithm

 Naïve Bayes (NB)
 Supervised learning algorithm for classification

 K-means Clustering (K-means)
 Unsupervised learning algorithm for clustering

 Support Vector Machine (SVM)
 Optimal margin classifier using SMO algorithm

 Restricted Boltzmann Machine (RBM)
 Stochastic recurrent neural network

Performance Study (CPU)

1.
0

1.
8

3.
6

6.
3

1.
1

1.
2

1.
2

1.
2

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 CPU 2 CPU 4 CPU 8 CPU

K-means

1.
0

3.
1

4.
4

5.
5

0.
7

1.
6

2.
1

2.
3

0.00

0.50

1.00

1.50

1 CPU 2 CPU 4 CPU 8 CPUN
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

SVM

1.
0

1.
9

3.
4

5.
2

0.
1

0.
1

0.
1

0.
1

0.00

2.00

4.00

6.00

8.00

1 CPU 2 CPU 4 CPU 8 CPU

LBP

1.
0

1.
9

3.
1

3.
0

1.
0

1.
9

3.
4

4.
7

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 CPU 2 CPU 4 CPU 8 CPU

RBM

1.
0

1.
7

1.
8

1.
9

0.
5

1.
0

1.
4

1.
6

0.00

0.50

1.00

1.50

2.00

1 CPU 2 CPU 4 CPU 8 CPUN
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

GDA

1.
0

2.
0

3.
4

4.
6

0.
6

0.
8

1.
0

1.
1

 0.00

 0.50

 1.00

 1.50

 2.00

1 CPU 2 CPU 4 CPU 8 CPU

Naive Bayes

DELITE Parallelized MATLAB

Presenter
Presentation Notes
Details in the paper, I wanted to focus on a couple of apps here
K-means: vectorization performed better single-threaded, but scaled better using parfor… however, it started so high with parfor and scaled it never catches up to the performance here. For an application developer, this is very difficult to diagnose and reason about.
LBP is an app that doesn’t fit in the matlab paradigm, so you need to abandon productivity to get performance, but using DSLs can allow you to get the best of both worlds.

Performance Study (GPU)

0.03

0.06

0.13

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

GDA RBM SVM KM NB LBP

N
o
rm

al
iz

ed
 S

p
ee

d
u
p

DELITE MATLAB (GPU) MATLAB (Jacket GPU)

Speedup relative to single core execution time on Nehalem system

Presenter
Presentation Notes
Comparable to jacket for the first 3 applications.
Delite performs better on the next two, mainly because we used the compiler plugin to generate kernels from control structures with user supplied functions, which are coarser grained than individual data parallel operations.

Domain Specific Optimizations

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

K-means Best-effort (1.2% error)
Best-effort (4.2% error) Best-effort (7.4% error)

SVM Relaxed SVM (+ 1% error)

1.0x

1.8x

4.9x
12.7x

1.0x

1.8x

Speedup relative to 8 core execution time on Nehalem system

Best Effort Relaxed Dependencies

Conclusion
 Using Domain Specific Languages (DSLs) is a

potential solution for heterogeneous parallelism
 OptiML is a proof-of-concept DSL for ML

 Productive, portable, performant
 Delite is a framework for building DSLs and a parallel

runtime
 Simplifies developing implicitly parallel DSLs
 Maps DSL to heterogeneous devices
 Performs GPU specific optimizations and automatic code

generation

 Experimental results show that OptiML+Delite
outperforms various MATLAB implementations

Presenter
Presentation Notes
* Expand PPoPP acronym

	A DOMAIN SPECIFIC APPROACH TO HETEROGENEOUS PARALLELISM��
	Era of Power Limited Computing
	Computing System Power
	Heterogeneous Hardware
	Heterogeneous Parallel Architectures
	Heterogeneous Parallel Programming
	Programmability Chasm
	Is it Possible to Write �One Program��and��Run it on all these TARGETS?
	Programmability Chasm
	The Ideal Parallel Programming Language
	Successful Languages
	Successful Languages
	Domain Specific Languages
	Is it Possible to Write �One Program��and��Run it on all these TARGETS?
	 HYPOTHESIS: YES, BUT NEED��Domain-Specific �Libraries and Languages
	A Solution For Pervasive Parallelism
	Benefits of Using DSLs for Parallelism
	Bridging the Programmability Chasm
	OptiML: A DSL for ML
	OptiML: Motivation
	OptiML: Overview
	Example OptiML / MATLAB code�(Gaussian Discriminant Analysis)
	MATLAB implementation
	Domain Specific Optimizations
	Delite: a framework to help build parallel DSLs
	Composable parallel patterns
	Example code for Delite OP
	Delite: a dynamic parallel runtime
	Delite Execution Flow
	Using GPUs with MATLAB
	Using GPUs with Delite
	Optimized GPU Runtime Diagram
	GPU Code generation
	GPU Code Generation Flow
	Experimental Setup
	Benchmark Applications
	Performance Study (CPU)
	Performance Study (GPU)
	Domain Specific Optimizations
	Conclusion

